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This review deals with the choice of a method of solving the inverse kinetic problem (IKP) 
which would provide the most definite description of the process under conditions of ambiguity. 
Two fundamentally different methodologies are possible for the IKP solution: one is based on 
the principle of unambiguous description (discrimination), while the other relies upon the 
complementarity principle (generalized descriptions). Specific IKP solution methods have been 
classified, the methodological differences being taken into account. In the first part of this review, 
general and special limitations in discrimination of formal models have been analysed. 

The IKP is one of the most intricate problems in the formal kinetics of solid- 
phase reactions (particularly in the nonisothermal case). A researcher wishing to 
apply the techniques and instruments of thermal analysis is often completely 
nonplussed by the vast and increasing diversity of approaches to the problem. A 
further improvement of the IKP solution classification, and systematization of the 
available approaches from different standpoints, may be very helpful in such a 
situation. We consider it useful to divide the I K P  solution methods into groups 
possessing common properties in respect of the information that may be obtained 
by solving this problem. The review seeks to analyse IKP solutions with the above 
points in view. 

The IKP is a particular case of a wide class of inverse system analysis problems 
solved in order to find an equation that would describe the system behaviour in terms 
of the present input and output signals [1]. All inverse problems are regarded as 
incorrect ones [2], as in the general case their solution is ambiguous. 

The IKP, whose solution is the formal model of a process and its effective kinetic 
parameters (activation energy and pre-exponent), is characterized by two kinds of 
ambiguity [3-5]. The ambiguity of the first kind stems from the situation when only 
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a limited number of kinetic constants can be determined via experimental data 
[3-6]. When attempts are made to estimate a higher number of kinetic constants, the 
latter lose their iladependence, and, as result, their numerical values lose physical 
meaning. The overcoming of the first kind of ambiguity through an analysis of 
Jacobi matrices is dwelt on in [4-6]. This approach for solid-phase kinetics is 
discussed in [7]. The ambiguity of the second kind implies that a set of experimental 
data can be described successfully by different sets of formal models and kinetic 
constants [3-5]. It is worth noting that, unlike the ambiguity of the first kind, which 
can be eliminated completely, the ambiguity of the second kind can only be reduced 
to some extent [8]. It is precisely this reduction of the ambiguity that is thought to be 
the main goal of any IKP solution method. Differentiation should be made here 
between the "IKP solution method" and the "method of calculating kinetic 
parameters". The kinetic parameters of a process can obviously be calculated, 
provided certain assumptions are made concerning its formal model. For example, 
the assumption that the kinetic parameters should be calculated following the 
formal model which offers the best description of the experimental data underlies 
the statistical approach to the solution. A whole set of kinetic parameter calculation 
methods, e.g. the Borchardt-Daniels [9], ~est~tk-Berggren [10] methods, etc., can in 
turn be used within the framework of the statistical method. 

It should be noted that the classification of IKP solution techniques suggested in 
this manuscript also makes it possible to combine the kinetic parameter calculation 
methods as certain groups possessing common properties with respect to the IKP 
solution. In fact, it classifies the kinetic parameter calculation methods themselves. 
The conventional classification [11-15] of the kinetic parameter calculation 
methods by dividing them into differential and integral ones, relying on the 
experimental data used, offers no inference as the extent to which the calculated 
parameters are a reasonable IKP solution. 

Further, our work is far from being a comprehensive review of the kinetic 
parameter calculation methods (these can be found elsewhere [11-15]). We shall use 
them for purposes of illustration. At the same time, the paper complements the 
above reviews with new studies from me eighties and the calculation methods that 
have not received adequate attention. First of all, they include the isoconversional 
[16] and similar calculation methods. These methods are of fundamental 
importance for our classification based on the methodological principles suggested 
in [8] and considered briefly below. 
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Classification principles 

It is shown in [8] that there are two basically different approaches to the IKP 
solution or, in other words, two ways to reduce its ambiguity. The first, traditional 
way (analysis) is used to discriminate the competing formal models of the processes 
in order to choose the only "best" one. This way relies on the principle of 
unambiguous description. The second, nontraditional way (synthesis) is used to 
derive generalized (synthetic) descriptions from a set of competing models. It is 
based on the complementarity principle. Precisely these two, the complementarity 
principle and principle of unambiguous description, form the basis of the proposed 
classification. The further discussion will follow the short classification presented in 
Fig. 1. 

I IKP solution methc~cls based on 1 

I I 
.~ Unambiguous (generalized description) 

Statistical methods 

Discrimination methods 
using additional theore- 
tical physico - chemical 
information 

I Other discrimination i 
methods l 

L r 
Generalized description of 

I Lmodel type 
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I combination type 

~ Meth~ b~ ~ h , , ,  

I One kinetic I l Severer kinetic I curve .... J i curve ! 

rig. 1 The classification of the IKP solution methods 

IKP solution methods based on unambiguous 
description (discrimination) 

These methods reduce the ambiguity of the IKP solution by discriminating the 
competing models in order to choose the only "best" one. Any discrimination relies 
upon additional information which is external with respect to a specific experiment 
as it is obtained from outside. Generally, this is information about the nature of the 
process or the properties of the inverse problem solution. In the overwhelming 
majority of cases, the IKP is solved by using statistical methods of discrimination. 
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Statistical methods of discrimination 

For discrimination, the methods of this group use additional information on the 
kind of distribution of random values. The latter include, for instance, such 
statistical characteristics as the correlation coefficient and the residual sum of 
squares calculated by fitting the parameters of Eq. (1) 

d~/dt = A exp ( -  E/RT)f(~) (1) 

where d~/dt is the process rate, A and E are the kinetic parameters (pre-exponent 
and activation energy, respectively), R is the gas constant, T is the absolute 
temperature, f (~)  is the formal model of a process and ~ is the transformation 
degree. As the IKP solution, one formal model with corresponding parameters is 
chosen. It is consistent with an extreme value of the statistical characteristic used for 
the IKP solution. In discriminating the IKP solutions, it is mandatory to test 
statistical characteristics for homogeneity. An unambiguous choice of the IKP 
.solution model is only possible within a certain confidence interval when the 
extreme value of the statistical characteristic and its closest value are inhomoge- 
neous. Different aspects of statistical tests as applied to model discrimination are 
dwelt on in [18-21]. 

Among the kinetic parameter calculation methods most widely used [22] is 
Zsak6's method [23]. These methods apply a statistical characteristic, such as the 
standard deviation of the experimental temperature integral g(~) from the 
theoretical one (p(E/RT)): Bi-- logg(~)-logp(E/RTi). As noted in [20], the ratio 
of the squared standard deviations fi calculated in Zsak6's method 

6 = ~/~ (B~- B)2/r 

(B, being the average of all B~ and r being the number of points) obeys Fisher's 
distribution [17]. The latter offers the F-test for discrimination of the g(~) process 
models. Thus, the use of the F-test to verify the homogeneity of the standard 
deviations cited in [23] (complex 1) has exhibited their homogeneity for three 
(1 - ~)" models at n = 0, 1 and 2. Hence, the choice of the model with n = 1 [23] for 
the minimum standard deviation is statistically unjustified. Statistical tests are not 
used either in processing experimental data by Zsak6's method in other references 
[24, 28] or in its computer version [26]. It should be noted that the use of 
experimentaldata [26] can easily show that the F-test offers an unambiguous choice 
of the model (1 -~ )"  with the set n = 0, 0.5, 0.67 and 1. This does not imply, 
however, that in this case the unambiguous choice would have been possible if a 
much wider spectrum of formal models different from ( 1 -  ~)" had been used. 

The statistical methods of IKP solution using a wide set of formal models were 
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applied, for instance, in [19, 27-32]. In [27], the results on the thermogravimetric 
decomposition of a complex compound were interpreted with the aid of the ~atava 
method [33]. The correlation coefficient, whose maximum turned out to be equal for 
five Avrami-Erofeev models with different power exponents, was used as a 
statistical characteristic for discrimination. The activation energies consistent with 
these models ranged from 50 to 342 kJ/mol. In [28], the results of the 
thermogravimetric decomposition of citric acid were processed by using the 
Reich-Stivala method [29], implementing statistical discrimination on the basis of 
the standard error proved to be minimum for the diffusional Junder model. 
However, more than 1000 experimental points are required to discriminate the 
Ginstling-Brounstein model, closest to it in the standard deviation value, within 
95% probability. 

Various kinetic parameter calculation methods are compared theoretically in [30] 
with the correlation coefficient and standard error as a discrimination criterion. The 
maximum value of the former and the minimum of the latter are found to be 
consistent with different models. This fact is one of the reasons why a single model 
should not be chosen via an extreme value of some statistical characteristic. It 
should be noted [30] that, even for the theoretical data simulated according to the 
first-order reaction and Avrami-Erofeev (power exponent 2/3) equations, the 
integral methods of kinetic parameter calculation suggested by Boy and Bohme [34] 
and Coats and Redfern [35] do not allow one to discriminate between the 
Avrami-Erofeev (power exponents 2/3 and 1/2) and first-order reaction models in 
terms of the statistical characteristics used in [30]. The kinetic parameters 
corresponding to the above three models differ by a factor of 3-4 times, depending 
on the calculation procedure. It has also been found [30] that, following the 
Boy-Bohme method, the experimental data on kaolinite decomposition are 
described best of all by the standard error by the Avrami-Erofeev model (power 
exponent 1/2). About 50 points are required for unambiguous discrimination of the 
competing second-order reaction model. The activation energies calculated with 
these competing models differ by a factor of about as much as 3 times. 

The statistical tests in [31, 32] have reduced the number of competing models 
rather than offered a certain formal process mechanism. It is worth noting here that 
the isothermal experiment regarded as being more accurate does not allow one to 
make an unambiguous choice of a model [27, 32, 36]. 

The statistical IKP solution methods often apply to a purely mechanistic 
approach based on the adjustable parameter model (reaction order or 
Avrami-Erofeev model). In this case, the inverse problem solution is reduced to the 
finding of the adjustable parameter consistent with the extreme value of some 
statistical characteristic. In the adjustable parameter case, it is most convenient to 
reduce Eq. (1) to its linear form through a logarithmic transformation. Then, the 
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adjustable oarameter can easily be found together with the kinetic parameter by 
using multi-dimensional linear regression [37, 38]. This is the way in which the 
kinetic parameters and the reaction order are determined by using the standard 
software of the Mettler TA 3000 analyzer [39]. The estimates so obtained comply 
with the minimum residual sum of squares [17]. The order of reaction in [40, 41] was 
chosen in terms of the highest linearity, with the linear correlation coefficient used 
[42-44] as its numerical characteristic for the IKP solution. The BASIC program 
text in [44] allows the order of reaction to be calculated via the maximum 
correlation coefficient. Fitting of the adjustable parameters for both models 
(reaction order and Avrami-Erofeev models) is dwelt upon in [45-47], assuming the 
correlation coefficient and the standard deviation at one time to be statistical 
characteristics. The adjustable parameters obtained in this way in the above models 
often fail to be interpreted on physical grounds. Thus, in [46] the isothermal 
dehydration of magnesium oxalate can be appropriately described by both the 
reaction order (n = 1.56) and Avrami-Erofeev (m = 2.36) models. In this 
instance, the activation energy values are practically equal (the latter specificity of 
isothermal kinetics [481 will be discussed below). Similarly, in [47] barium oxalate 
dehydration is equally well described by the reaction order and Avrami-Erofeev 
models. 

The single adjustable parameter model can hardly be considered to be universal, 
and this is the main reason why it should not be widely used in the IKP solution. 
However, if such a model could adequately describe the kinetic curve geometry, it 
would be possible to use it [49] and to derive practically valuable information [50]. 
The great errors in the kinetic parameters estimated via the widely-used [22] 
Freeman-Carroll method [51], based on the (1 - c0" model, provide evidence, among 
others, against the application of the reac~on order model. Modelling of the kinetic 
curves in accordance with various found mechanisms and further calculations of the 
kinetic parameters via the Freeman-Carroll method show [52] that the activation 
energy error may constitute 50% of the true value. However, the experimental 
dependence is linearized here in corresponding coordinates with a correlation 
coefficient of more than 0.99999 [52]. The inapplicability of the Freeman-Carroll 
method was also emphasized in [53]. The modification of this method to increase its 
accuracy is suggested in [54]. Along with the Freeman-Carroll method, reference [55] 
deals with the Horowitz-Metzger method for the calculation of kinetic parameters on 
the basis of the reaction order model. Both methods are shown to result in great errors 
when applied to process model data. To be specific, the activation energy values may 
be as much as 10 times different from the model value [55]. Hence, the applicability 
and universality of the reaction order model are always debatable [56, 57]. 

The linearity of the experimental data in the coordinates of the Kissinger equation, 
derived on the assumption that it is feasible to describe a process in terms of the 
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reaction order model, provides evidence in [58] of the applicability of the equation 
(1-  ~)" for the description of solid-phase processes. Such evidence, however, is 
restricted by the fact that the range of applicability of the Kissinger method, as will be 
shown below, does not only include the processes governed by the reaction order 
model. The authors of [60] offer a more reliable verification of the reaction order 
model, which is advised as a reliability test for the kinetic parameters obtained with 
the Mettler TA 3000 analyzer software. In parncular, it is noted in [60] that 
confidence intervals for kinetic parameters should not differ by more than 10% from 
the quantities themselves; the kinetic parameters calculated for different segments of 
kinetic curves should not be more than 10% different; the parameters should not 
depend on the heating rate, and the times of achieving one and the same 
transformation degree found from the reaction order under iso- and nonisothermal 
conditions should coincide. 

In addition to the above statistical characteristics (correlation coefficient, residual 
sum of squares), various averages and average absolute deviations are used to fit the 
reaction order model [6145]. All the approaches [6145] are computer-aided, which 
greatly facilitates the kinetic analysis. This fact, however, does not increase the 
reliability, because of the restricted application of the model used in these methods. 

When the IKP is solved by statistical methods, the kinetic parameters calculated by 
various methods often coincide [41, 42, 66-70]. Such a coincidence does not by any 
means point to the adequacy of the model found as a result of discrimination; it only 
corroborates the equivalence of the calculation procedures used. This can easily be 
inferred from [55]. It is shown in this work that the kinetic parameters calculated with 
the Freeman-Carroll and Horowitz-Metzger methods are in agreement, but their 
calculated values differ significantly from the true ones. Thus, the coincidence of the 
kinetic parameter values calculated via one and the same IKP solution method 
(discrimination) can not be a,criterion of the proper choice of the model. Besides, the 
similarity of the numerical values of the kinetic parameters by no means points to 
their statistical identity. Thus, an example is considered in [71] when close parameter 
values cannot be regarded as consistent, while highly different parameters are 
statistically ider~tical. Such a situation holds for highly elongated confidence regions 
characteristic of the IKP solution [72]. The identity of kinetic parameters estimated 
by different methods should be appropriately tested, for example, as in [73]. 

The above cited aspects of the IKP solution are far from all of the problems 
concerning the correct statistical processing of kmetlc data. It seems necessary to list 
these problems and the ways to solve them. 

First, in the great majority of cases, the kinetic parameters are calculated by 
linearizing the appropriate equation through a logarithmic transformation. Such a 
procedure markedly simplifies further calculations, though it is not quite correct, 
because of a random error that creeps into Eq. (1) (or a similar one) as an additive 
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component. The logarithmic transformation distorts [13] Gaussian distribution, the 
parameters obtained being shifted. This effect is well known in statistics [74] as 
"regression displacement to the past". Thus, nonlinear calculation methods whose 
advantages are noted in [20, 75-83] should be preferred in interpreting the kinetic 
data. Among them, paper [83] requires special emphasis, as with this method it is 
possible to estimate both the kinetic parameters and the error distribution model. 
Certainly, nonlinear regression does not basically reduce the ambiguity [84]. 
However, the sensitivity of nonlinear Eq. (l) to the form of the formal model 
increases relative to the linear one [85]. 

Secondly, statistical processing of kinetic data, as a rule, is realized on the 
assumption that the random error is only included in the dependent variable. This 
assumption is simplified, however, due to the limited measurement accuracy of the 
dependent variable (time and especially temperature). Therefore, the regression 
methods used to process the kinetic data should take account of the errors in both 
variables [74]. The methods are detailed in [86-88]. 

Thirdly, it should be noted that statistical processing generally requires an 
assumption of the normal (Gaussian) distribution of errors. The validity of this 
assumption, which can be ascertained via appropriate tests [17], is not usually 
verified. As noted in [74, 89], the Gaussian model is too stringent for real data, and the 
excesses are more typical for them than follows from normal distribution. The kinetic 
parameters estimated with the least squares method are only optimum for normal 
distribution [74]. In this connection, the statistical apparatus gains special importance 
in obtaining robust estimates [74, 89, 90]. Such estimates, as noted earlier [8, 13], are 
required to process kinetic data. The excesses of experimental data can also be 
eliminated by smoothing with the aid of different filters [91-93]. It should be 
remembered, however, that any smoothing shifts the kinetic curves and, thus, the 
parameters of the smoothed curves will also be shifted. This fact presumably 
accounts for the essential increase of the kinetic parameters [93] calculated with the 
smoothed curves as compared with the reference ones, resulting from a shift of the 
curves to higher temperature region. 

We believe that these are the three main problems that have lacked appropriate 
attention of late in the statistical processing of kinetic data. The solution of these 
problems will certainly provide more realistic results as compared with those 
obtained by conventional methods. Nevertheless, it should be remembered that, 
along with the shortcomings of statistical discrimination so far noted, there are some 
arguments against it on the whole. As shown in [21], the accuracy of experimental 
data is often insufficient to discriminate some models. The authors of [94] have drawn 
a more pessimistic conclusion: the IKP solution can be obtained within 10% 
accuracy provided the vector of the measured quantities is known as accurately as 
0.0001%. One more limitation of statistical discrimination procedures and of the 
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estimation of the kinetic parameters lies in the fact that none of these procedures is 
adopted as a standard [95]. Meanwhile, as noted above, the use of different statistical 
characteristics may result in different IKP solutions. However, the argument in [96] 
is most convincing to state that, in choosing the best model from the set of them, we 
ought to compare two statistical hypotheses. One of them assumes that experimental 
data can most appropriately be described by a single model. The other implies that 
the whole set of discriminating models gives their best description. As fairly noted in 
[96], the latter hypothesis is so general that it can describe any data within any 
accuracy and with higher accuracy, if anything, than the former hypothesis. As a 
result, the choice of the "best" model becomes meaningless, since the latter 
hypothesis is always better than the former from statistical grounds [96]. 

To conclude the section dealing with the application of statistical discrimination 
methods used to solve IKP's, we shall formulate its main points. In using statistical 
methods, it is not advisable for one to restrict oneself to a single model with an 
adjustable parameter (the reaction order or Avrami-Erofeev models). Once a single 
model has been chosen via the extreme statistical characteristics, it should be tested 
for homogeneity in order to reveal statistically equivalent models. When an 
unambiguous solution can be obtained, it should be taken into account that the 
solution is probabilistic, i.e. it is a single one within some confidence probability. Such 
a probability is relative, however, as it reflects the interpolation properties of the 
chosen model with reference to the ones used to discriminate the models rather than 
with reference to the real process [97]. 

Discrimination methods utilizing additional theoretical 
physico-chemical information 

The methods in this group allow the IKP solutions to be discriminated by utilizing 
additional information derived within some theory concerning the processes under 
study or the properties of Eq. (1). In other words, within a certain theory, 
conventional information obtained in the kinetic experiment (kinetic curve) may be 
interpreted as additionally required to discriminate the IKP solutions. To be 
specific, theoretical estimates of the activated complex vibration frequency impose 
certain restrictions on the pre-exponential factor. Such restrictions allowed the 
authors of[96] to discount one of two competing models when they had failed to do so 
by statistical discrimination. However, the restrictions imposed on the pre- 
exponential value do not yield an unambiguous IKP solution. Thus, such restrictions, 
when used to discriminate formal models for calcium oxalate decomposition, have 
given rise to three equally justified models with the pre-exponential between 1011 
and l0 is I/S [99]. In this connection, it was suggested in [99] that the empirical 
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relationship between the reaction order value and the degree of transformation at 
�9 naximum rate be used as an additional criterion. Thus, by comparing the 
transformation deg.ree, calculated in terms of the reaction order via the empirical 
formula [99], with its experimental value, we can choose the best model, as 0vas done 
in the cited work. Wide use of such an additional criterion, however, is as 
problematic as the universal application of the reaction order model criticized in the 
previous section, since the formula in [99] holds for this model alone. As concerns 
the range restricting the pre-exponential value by the activated complex vibration 
frequency, namely 1012 to 1014 1/s [98], 1011 to 10 is 1/s [99], it is seen to be too wide 
to be consistent with multiple IKP solutions. There is no need at all to discuss the 
applicability o f  these values to solid-phase processes. 

By transforming basic Eq. (1) and assuming a definite form of the model, we can 
derive equations to relate the kinetic parameters and the coordinates of representative 
points on the kinetic curve. Additional information is obtained in this case as the basis 
for discrimination on the purely theoretical assumption that it is feasible to describe 
various solid-phase processes by the reaction order model or Avrami-Erofeev 
equation. For instance, the authors of [100, 101] suggested methods of calculating 
kinetic parameters from the temperature, the degree of transformation and its 
derivative at the maximum point of the kinetic curve. The process is assumed to obey 
the reaction order model, whose value is determined by the maximum point 
coordinates. Similar methods are argued in [102] and a method is considered [100] in 
its iterative version. It is found that the kinetic parameters determined via single point 
coordinates require that  the maximum temperature measured be at least as accurate 
as 3 deg, and that'~he degree of transformation be no less than 0.025 and its derivative 
no less than 5.10- 5 1/deg. It is stated in [102] that the methods in this group will fail 
to give a satisfactory description if all three values involve such errors. 

Assuming that the process can be described by the reaction order or the 
Avrami-Erofeev models, relations were derived [103] for the kinetic parameters and 
temperatures at which the third derivative of the nonisothermal curve is zero. It is 
recommended that the form of the model be found from isothermal data. Other 
methods of determining kinetic parameters from three [104] or four [105] 
nonisotherrnal curve points are also known. These are based on the reaction order 
model and are iterative. 

The common limitation of the methods [100-105] is that they are bounded within a 
single (reaction order or Avrami-Erofeev) model. Its universal use has already been 
commented on in the discussion of statistical discrimination methods. In fact, the 
discrimination by the methods [100-105] is a priori bounded within one model with a 
fitting'parameter whose applicability is not corroborated. Further, as a very small 
number of points are used to estimate the kinetic parameters, the probability of errors 
is rather high. Accordingly, in general, the IKP solution via the representative kinetic 
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curve points can only be recommended for a rough estimation of the kinetic 
parameters. 

As analysis of Eq. (1) has shown [106] that the kinetic parameters calculated with 
the appropriately chosen model are independent of heating rate. This situation seems 
to stem from one fundamental postulate of formal kinetics, implying the 
independence of the kinetic parameters from the experimental conditions. It can be 
used as additional information to discriminate IKP solutions. The criterion of the 
independence of the kinetic parameters from the heating rate was used [106] to choose 
a model for the catalytic decomposition of potassium perchlorate. The kinetic 
parameters calculated in terms of this model are in much better agreement with 
isothermal values than are those calculated with other models [106]. 

In view of the criterion proposed in [106], it will be of interest to analyse the data 
obtained by different authors who applied statistical discrimination methods for the 
IKP solution. Thus, the dependence of the kinetic parameters on the heating rate was 
observed in [31, 36, 107-109]. In [107] alone, the dependence of the heating rate on the 
activation energy is not systematic, and therefore there is no reason to consider the 
choice of the model as incorrect. In other cases [31, 36, 108, 109], an essential decrease 
in the activation energy with increasing heating rate is observed. Following the 
criterion in [106], therefore, the models in those works were inappropriately chosen. 
The criterion of IKP solution discrimination offered in [106] is at the same time the 
technique used to test whether the models chosen by other discrimination methods 
are chosen correctly. It should be noted that such testing requires several 
nonisothermal runs. In this case, however, kinetic parameters can be calculated 
without choosing a specific model, i.e. by ignoring discrimination altogether. As will 
be shown below, just such an approach seems to be the most reliable. 

The authors of[110] have advised that the IKP be solved with nonisothermal data, 
using isothermal experimental results that were supported in [111-113]. The method 
suggested the choice of a model of the process via isothermal experimental data, and 
then calculation of the kinetic parameters for nonisothermal data. Such a 
discrimination relies upon the theoretical statement that the formal process 
mechanism is independent of the experimental conditions. Within the statement, the 
information derived from isothermal kinetic experiments serves as additional 
information for discriminating IKP solutions. It should be remembered, however, 
that the model can be chosen via isothermal data provided the IKP solution, which is 
ambiguous in the general case, is known. The ambiguity of the IKP solution for 
isothermal data has already been illustrated [27, 32, 36]. The choice of the model by 
using isothermal kinetic data is undoubtedly more simple than in the nonisothermal 
case, as the number o f  competing models in the first case is always less than in the 
second. Nevertheless, a situation with no competing models is hardly possible. The 
ambiguous choice of the formal process model from isothermal data underlies the 
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main limitation of the method. It implies that even a small error made in the choice of 
the process model with isothermal data may cause an essential error in the kinetic 
parameters calculated with nonisothermal data by using this model. This is due to the 
fact that, unlike isothermal data, for which the kinetic parameters slightly depend on 
the form of the model [48], kinetic parameters for nonisothermal data may vary by 
several orders, depending on the form of the model [114]. Therefore, the application 
of the approach suggested in [110] involves, in general, a certain degree of risk. For 
instance, such an approach was used in [115] to describe the magnesite and calcite 
decomposition kinetics. It was found in particular that, under isothermal conditions, 
both processes are described by the reaction equation for a process at an interface. 
The calculations of the nonisothermal kinetic parameters by using this model 
exhibited a slight increase in the activation energy for both magnesite and calcite 
decomposition: 131 to 139 kJ/mol and 155 to 176 kJ/mol with the heating rate rising 
from 25 to 15 deg/min. Thus, the IKP solution following [110] does not satisfy the 
above criterion for the correct choice of a model (from the heating rate-independence 
of the kinetic parameters). It should be noted here that the range of activation 
energies calculated in terms of nonisothermal data overlaps the isothermal value of 
136 kJ/mol in the magnesite decomposition case alone. For the calcite instance, the 
isothermal value proved to be outside the corresponding range, and amounted to 
179.5 k J/tool. 

We think it more reliable to use the approach which, to some extent, is in contrast 
with the one offered in [110], i.e. calculation of the kinetic parameters via isothermal 
data, with subsequent choice of the formal model from nonisothermal results. This 
model-.must yield kinetic parameters mostly close to the isothermal ones. The 
discrimination method as such presumably relies on the aforesaid theoretical 
statement on the independence of the kinetic parameters from the experimental 
conditions. A similar approach was used in [116]. This takes account of the main 
advantage of isothermal data in the IKP solution: the kinetic parameters are weakly 
dependent on the model. Again, it makes use of the high sensitivity of the kinetic 
parameters towards the form of the model, which is typical of nonisothermal data. It 
should also be noted that a pure nonisothermal version of such an approach to the 
IKP solution is also possible. Thus, in [117] the results of the several nonisothermal 
experiments were used with the method of invariant kinetic parameters [118], which 
does not require the explicit form of the model for parameter calculation, to seek the 
activation energy and pre-exponential values. A formal model which describes 
experimental data in the best way was discriminated in accordance with the invariant 
kinetic parameters. A similar comparison of the kinetic parameters, calculated 
without choosing a process model in an explicit form and using the methods based on 
discrimination, was made in [119-122]. The agreement [119, 122] of the parameters 
obtained with different IKP solution techniques (with discrimination and without it) 
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may be regarded as a criterion of the proper choice of the process model, in contrast 
with the agreement of the parameters calculated by different methods within one and 
the same IKP solution approach (discrimination) [41, 42, 66-70]. 

An original IKP solution method has been offered in [123]. It classifies the kinetic 
parameter calculation and formal model discrimination procedures in accordance 
with the results of several nonisothermal experiments. The kinetic parameters are 
computed via the temperature at which one and the same degree of transformation is 
achieved at different heating rates (isoconversional method). The models are 
discriminated over the transformation degrees and time for one and the same 
temperature at different heating rates (as in the case of isothermal conditions). The 
method was verified for the model data to prove its adequacy. 

All the methods of discriminating formal models with respect to the consistency of 
the kinetic parameters derived in different IKP solution approaches are limited by the 
fact that the parameters change discretely depending on the form of the model. 
Therefore, there may be no agreement at all between kinetic parameter calculations 
that ignore explicit--form models and those based on discrimination of any kind. 
Complete discrimination will evidently be hindered in this case. For such 
discriminations, it is advisable to perform statistical homogeneity tests [73] for the 
parameters obtained by different methods. 

We shall conclude this section dealing with theoretical discrimination methods by 
emphasizing their advantages. First, these methods ignore physically meaningless 
IKP solutions. Secondly, they provide consistent kinetic parameters calculated for 
different experimental conditions, such as iso- and nonisothermal conditions or at 
different heating rates. This is the main asset of the theory-based discrimination. 
However, such discriminations have a common limitation: none of them yields an 
ambiguous IKP solution. In the case of theoretical discrimination, this shortcoming 
directly indicates that various theoretical statements never provide an unambiguous 
discrimination criterion. Theory is only exact for general trends and laws whose 
particular forms are always specific for particular entities. It is therefore possible to 
specify a wide range of reasonable values of kinetic parameters rather than rigid 
boundaries for negligible deviations of the parameters derived under different 
experimental conditions. 

Other discrimination methods 

Two IKP solution methods will be discussed in this section. These include the 
discrimination experimental design [124] and Tikhonov's regularization [2]. Both are 
more rarely used than the above approaches. However, a brief discussion of them is 
desirable since Tikhonov's regularization is a general approach to the solution of 
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inverse problems, while the discrimination experimental design is widely used in the 
kinetics of homogeneous reactions and is now being adopted in thermoanalytical 
practice [125]. 

The design of discriminating experiments consists in searching for experimental 
conditions under which the measurements are noninvariant when one competing 
model is substituted for another [124]. In this case, discrimination relies upon the 
information obtained as a result of a series of successive experiments, with each 
Subsequent experiment designed by using the information derived from the previous 
one. The formal model chosen from such discrimination will possess the highest 
interpolation properties under a wide range of experimental conditions. However, it 
does not mean that this model completely represents the process under study and may 
be considered a true one [97]. Further, discrimination being possible only under 
certain experimental conditions [124], the IKP ambiguity is likely to hold true under 
other conditions. 

Tikhonov's regularization method allows one to discriminate the IKP solution by 
using information on the solution properties [2] (smoothness, monotony, convexity, 
etc.). Additional conditions imposed make it possible to derive a single solution to the 
inverse problem, whose particular form will depend on the condition imposed. In this 
case, ambiguity manifests itself in the fact that a set of inverse problem solutions will 
be consistent with the set of conditions imposed. The regularization method as 
applied to the IKP solution is considered in [126]. It can also be used to solve inverse 
thermodynamic problems [127]. 

The regularization technique is basically close in essence to the discrimination 
methods based on theoretical considerations. Thus, it is noted in [2] that this method 
can be regarded as formalization and justification of the regularization method from 
common sense. It has been emphasized in [128] that the restrictions applied in the 
regularization method are artificial. It is also worth noting that Tikhonov's 
regularization is intimately connected with the statistical inverse problem solution 
and "ridge" regression [74], in particular. The coincidence of the "ridge" estimates 
with the regularized solution is considered in [129]. Possible experimental designs 
aimed at solving inverse problems by different methods, regularization included, are 
dwelt on in [130]. The monograph [131] is devoted to the software for Tikhonov's 
regularization and contains FORTRAN program texts. 

Criticism of  discrimination as an IKP solution method. 

Search for an alternative 

The previous sections concern different versions of one IKP solution approach 
(discrimination) based on an unambiguous description It can readily be seen that 
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none of the discriminations considered provided an unambiguous IKP solution. In 
other words, all the "unambiguous" discriminated solutions exhibited camouflaged 
ambiguity in a thorough analysis. Obviously, this limitation reflects imperfection of 
the discrimination methodology rather than that of the specific discrimination 
methods. In this section, we shall present arguments against the discrimination 
methodology whose analysis outlines the alternative IKP solution methodology. 

Let us consider in brief the main features of the discrimination methodology. This 
methodology is based on the unambiguous description principle, consisting in a 
mandatory choice of the single "best" formal process model to estimate kinetic 
parameters. The unambiguous description principle implies, in fact, that there exists a 
true model of the process under consideration. Such an assumption causes no doubts. 
However, a problem arises here because the model is chosen from some arbitrary set, 
i.e. depending on a researcher's subjective considerations, and we are always unaware 
as to whether it includes the true model [97]. Any discrimination always offers some 
set of "best" models from the above set. The researcher is not sure, however, that the 
"best" models include the true one unless he possesses direct information about the 
process mechanism. Hence, the grounds for future ambiguity are laid down at the 
earliest IKP solution stage, i.e. when the set of models for discrimination is being 
chosen. 

Naturally, the question arises of whether it is possible to derive an unambiguous 
IKP solution if the true model is included in the initial set of models to be 
discriminated. It seems to be possible only as an exception that proves the general rule 
which negates such possibility. We shall point to two reasons which do not allow an 
unambiguous discrimination even in such an artificial situation. The first reason 
implies that many of the classes of formal models cannot be distinguished in principle 
[132, 133] or at a certain error level [121]. This has the result that whole sets of models, 
including the true one, turn out to be the "best" discrimination models. The second 
one is due to the fundamental problem: for real solid-phase processes, how true can 
conventional elementary models [13, 14] be whose imperfection was noted in [134] ? A 
practical reduced-coordinate analysis of the agreement between the kinetic curves 
obtained for isothermal conditions and the model ones often shows that real 
processes are intermediate, i.e. they are not consistent with any of the formal models 
[115, 135-139]. 

Evidently, in the general case the elementary formal models are too simple to allow 
for all features of real processes. Complication of the models results in a great number 
of various empirical parameters; if the numerical values of these are appropriately 
chosen, they can describe any curves. The attempts to achieve agreement between real 
processes and formal models in an experimental manner (by simplifying the process 
via the elimination of various external factors, heat and mass transfer, etc.) are 
restricted, on the one hand, by the practical requirements relating to the process 
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conditions. On the other hand, even very sophisticated studies of monocrystal 
dehydration in vacuum prove that solid-phase processes are already macrokinetic at 
the micro level [140]. 

These, we think, are the main reasons why unambiguous discrimination is 
impossible in the general case. It should be remembered here that, even if a solid- 
phase model can be chosen unambiguously in same cases, the interpretation of the 
results will be ambiguous [141]. This stems from the fact that one and the same 
process model can be obtained from different assumptions on the mechanism 
underlying its derivation. For instance, in [142], the contracting sphere equation is 
derived from three different assumptions. 

Accordingly, ambiguity of the IKP solution is bound to occur, due to the fact that 
real solid-phase processes are so involved that any formal models are always 
incomplete (imperfect) for them and, therefore, cannot be true. In turn, any 
incomplete model of the process provides an ambiguous description of it [143]. As it is 
generally impossible to reduce real processes to the formal model level, it follows that, 
in an analysis of ambiguity and a search for ways to overcome it, the main emphasis 
should be placed on how to improve the formal description of solid-phase processes. 

The main paradox in the IKP solution is that formal models of the process are not 
truly the solutions to Eq. (1), i.e. they have been obtained independently of this 
equation and of particular experimental data. It is evident that the model solutions so 
obtained may describe a real process only to the extent to which some ideal process 
underlying this model reflects it [8]. Feasible derivation of more complete formal 
descriptions of the process is restricted because of the absence of the method of 
automatic synthesis of models [96], as the derivation of models is not amenable to 
algorithmic description [144]. It should be emphasized here that there is no method 
for the automatic synthesis of models in an explicit form. This means that, if a 
generalized description is available to represent any process in an implicit form (i.e. to 
describe formally the corresponding kinetic curve), the IKP solution can be obtained 
without any explicit form of the model set. Therefore, we hope that, as an alternative 
discrimination, the approach may be applied which uses some single generalized 
description by assuming a particular form depending on the experimental data, i.e. in 
the course of the IKP solution, rather than a "rigid" system of formal models. Such 
an approach will allow one to overcome the paradox encountered within the 
framework of discrimination methodology, because in this case the description of a 
process is synthesized from available experimental data and is therefore always in 
agreement with them. 

The alternative approach to the IKP solution based on generalized descriptions 
exhibits the methodology which is basically different from discrimination. It relies on 
the complementarity principle, which offers a unique possibility to overcome 
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ambiguity in all fields of knowledge [145]. This approach will be discussed in the 
second part of this review. 
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Zmammeafasmng - -  Diese Ubersicht handelt von der Auswahl einer Methode zur L6sung des inversen 
kinetischen Problemes (IKP), welches die prfiziseste Beschreibung des Vorganges auch unter nichteindeuti- 
gen Bedingnngen liefern kann. Zur L6sung des IKP Problemes sind zwei grundlegend verschiedene 
Methoden mrglich: die erste beruht auf dem Prinzip der eindeutigen Beschreibung (Unterscheidbarkeit), 
w/ihrend die zweite auf dem Komplementfirprinzip (generalisierte Beschreibung) aufbaut. Die konkreten 
IKP L6sungsverfahren wurden aufder Grundlage ihrer methodischen Unterschiede klassifiziert. Im ersten 
Teil dieses Uberblicks wurden allgemeine und spezielle Beschr/inkungen bei der Unterscheidung formaler 
Modelle untersucht. 

P e a m M e  - -  O63op nocB~uen npo6~eMe sb~6opa MeTO~a pemenns o6paTnofi rfftrIeTrfqecro~ 3a~a~n, 
uoaBo~omero B yc:IoBn~.x neo~o3na~n~ocra no~yqnT~ aan6o~ee onpeae~enHbie onncaHrI~ npouecca. 
OTMeqaeTcfl, aTO BO3MO)I(HbI Me npnnu,nna_qbno pa3~n~L1e MeTO~O~OrHn pemerma o6paTno~ 
3a31a'm: MeTOj10.rIOl'I, Dl, OCnOBanna~l Ha npnnttrlne o]lHo3Haqnoro ortncaHri~ (jIHCKpI, IMHHam,DI), 14 
MeTo~o.qorn~t, ocHoBanna~ Ha npnnu,ne ~onoJIrlnTe~br~ocTa (oro6me,nb~e omtcanns). C y~rexoM 
pa3ari,ma MeTO~Onornqecrnx nprratmnoa nponeaena raaccndpriKaurla rOHI(peTnr~rx MerO~OB pemenn~ 
o6paa'no~ rrmeTnneero~ 3aaa~a. B I~epso~ ,mca'n o63opa I~poana~n3npoBarm~ o6m,e i~ cneunqba~ecrne 
orpaHnqenn~[ MeTo~Ia ZHCI(pHMI4HaI~I4I~I. 
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